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Sliding mode control in a bioreactor model
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This article deals with an example of nonlinear control systems and the interlacing between
a biochemical system, the mathematical model and the constrains derived from the discrete
implementation of a continuous control policy. The theory is developed on a simplified model
of a bioreactor to be regulated, and the sliding mode control is presented as a robust control
technique. The biological interpretation of the results derived from the mathematical model is
pointed out, especially of those more closely involved with the implementation, as is the case
of sample period, which seems to be very enough with respect to the minimum time needed
for sample analysis.
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1. Introduction

Interdisciplinary resources mixing content from different topics which integrate
real life problems are currently necessary in scientists and engineers education. This
paper presents sliding mode control introducing the reader into the theory through
a biochemical example by mixing maths, physics, biology and chemistry. The in-
terdisciplinary nature of this project is of special interest for knowledge integration,
which so often appears to be sealed in separate worlds in university students educa-
tion.

By means of this example, some details of sliding mode control are introduced and
studied more clearly. The discussion of the obtained results leads an excellent opportu-
nity for a better understanding of the concepts.

The theory to be presented is developed through a real life problem: the control
of a bioreactor which is presented as a nonlinear system to be regulated. Through the
example the notions of dimensionless variables and parameters, and significant data will
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be discussed and the results, for instance, the real meaning of the variable time, will be
interpreted.

It is worth emphasizing the nonlinear dynamic behaviour of biological systems.
Linear control system design generally fails or shows very poor performance, even in a
very small area of operation in the phase plane, and therefore further advanced control
schemes have to be applied. Sliding mode control is the technique considered here
since it provides very simple control policies and it is robust in the presence of plant
parameter variations. It is based on ideal sliding dynamics defined by a sliding surface
and a control policy in such a way that the sliding surface becomes an atractor for the
dynamical system. See [1–4], where detailed background material can be readily found.

The bioreactor is a challenging control problem for several reasons. Although the
task involves few variables and is easily simulated, its nonlinearity makes its control
difficult. This problem satisfies the goals of relevance to real-life problems and is easy
enough to be presented as an academic example. Moreover, improvements in bioreactor
control techniques can result in significant savings for biochemical industries and in the
enhancement of the productivity of large volume applications.

The outline of the paper reads as follows. After the introduction, the problem
statement is presented in section 2. Section 3 is devoted to a brief introduction on sliding
control theory, which leads to a control strategy for the bioreactor in section 4. Section 5
shows the discretization of the sliding control and introduces some simulations; final
comments on application and a list of references close the work.

2. Problem statement

2.1. Model

The plant with which we are dealing is a continuously stirred tank reactor. The
tank contains a liquid mixture: water, nutrients and biological cells. Feed substratum
is introduced into the tank where the cells mix with the substratum while the culture
volume is kept constant. The biological process carried out in the tank is described by
the following states and parameters: cell concentration, X, substratum concentration, S,
feed concentration of substratum, SF , reactor volume, V , volumetric feed flow rate, F ,
specific growth rate, µ(S), specific substratum consumption rate, σ (S), and real time t .
The evolution of the process is described by

dX

dt
=−FX

V
+ µ(S)X, (1)

dS

dt
= F(SF − S)

V
− σ (S)X. (2)

The reader is referred to the tutorial paper of Bastin and Van Impe [5] for an exten-
sive introduction on the model and control issues for bioreactors.
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2.2. System dynamics

The previous model is particularized to an inhibited substratum model, for which,
as in [6], the normalized specific growth rate and the normalized substratum consump-
tion rate are, respectively,

µ(S)

µ(SF )
= (1−N)eN/γ ,

σ (S)

σ (SF )
= (1−N)eN/γ 1+ β

1+ β −N
.

Thus, equations (1) and (2) become

dC

dt∗
=−Cω + C(1−N)eN/γ , (3)

dN

dt∗
=−Nω + C(1−N)eN/γ 1+ β

1+ β −N
, (4)

where C is the normalized cell concentration C = X/(Y (SF)Sf ), Y is the “yield coeffi-
cient” Y (S) = µ(S)/σ (S), N is the substratum conversion (N = 1 − S/SF ) and t∗ is a
dimensionless time, which verifies

t∗ = tµ(SF ). (5)

Roughly speaking, these equations model the mass balance between cells and sub-
stratum determining the evolution of the dynamical system. The input variable

ω = F

µ(SF )V

is proportional to the flow running through the tank.
The system shows an autonomous growth model based on experimentation.
Some constraints must be considered. Cell concentration and substratum conver-

sion belong to the interval [0, 1], (C,N) ∈ [0, 1] × [0, 1]; the input variable is positive
and less than or equal to 2, ω ∈ [0, 2]. As in [6] the growth rate parameter γ is 0.48 and
the nutrient inhibition parameter β equals 0.02.

The objective is a regulation problem; that is to say, achieving and maintaining a
desired amount of cells or a substratum concentration by acting on the flow rate. In the
language of dynamical systems, an appropriate flow rate must be designed in order to
force the controlled system to have a previously stated equilibrium point which, in turn,
should be stable.

3. Background

Equilibrium points play a significant role in regulation problems since the steady
state is usually an equilibrium point.
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Definition 1. x = x∗ is an equilibrium point for the system. Then

ẋ = F(x) (6)

if and only if F(x∗) = 0.

Note that the trajectory x(t) = x∗ satisfies (6). Roughly speaking, this equilibrium
point is stable if trajectories starting close to x∗ go towards it.

There are several control methods for regulating a system. According to the goal
of this paper, sliding mode control has been chosen here. This method is based on the
two following main concepts:

• to define a surface, i.e., a relationship between state variables, in such a way that,
if trajectories slide on this surface, a previously stated behaviour (for instance,
reaching an equilibrium point) is achieved;

• to design an appropriate control law forcing this surface to be an attractor and a
dynamically invariant set.

Let us consider a single input dynamical system given by

ẋ = f (x)+ ug(x), (7)

where x ∈ U , an open set of Rn, f and g are smooth vector fields on U with g(x) �= 0
everywhere, and u :U → R is the control input.

Let � be a submanifold in U defined by a smooth function s :U → R, namely,

� = {x ∈ U | s(x) = 0
}
, (8)

where (grads)(x) �= 0 ∀x ∈ U and � ∩ U �= ∅ are assumed.
As for the input, let us take u defined by

u =
{
u+(x) if s(x) > 0,

u−(x) if s(x) < 0,
(9)

where both u+ and u− are smooth functions of x. There is no loss of generality in
assuming 〈grads, g〉 > 0.

Finally, let φ(x, t) be the trajectory of the dynamical system defined by (7), (8) and
(9) with initial conditions x(0) = x. It is worth remarking that the former dynamical
system is discontinuous on H = 0; thus, the standard results on differential equations
do not apply. We will deal with this subject later; let us assume for the moment the
existence and uniqueness of trajectories.

Definition 2. � is said to be a sliding surface for the dynamical system defined by (7),
(8) and (9) if there exists θ , an open set in U containing �, in such a way that ∀x ∈ θ \�,
one of the following conditions holds:

1. There exists a finite time ts > 0 such that

s
(
φ(x, t)

) �= 0, 0 � t < ts and s
(
φ(x, t)

) = 0, t � ts .
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Figure 1. An example of sliding, first case.

2. There exist ts and t̂s , 0 < ts < t̂s <∞ such that

s
(
φ(x, t)

) �= 0, 0 � t < ts and s
(
φ(x, t)

) = 0, ts � t < t̂s,

and φ(x, t̂s ) ∈ ∂(� ∩ U).

Roughly speaking, the trajectories starting in a neighbourhood of � must fall on �

and remain there (case 1) or, should one escape, it must go through ∂(� ∩ U).
An example of case 1 is depicted in figure 1 where two trajectories, starting very

close to �, fall on it and remain there converging to an equilibrium point of the ideal
sliding dynamics. In figure 2 the behaviour described in case 2 is depicted. Two trajec-
tories starting close to � fall on it and remain there in the open set U ∩ � and escape
from � through ∂(U ∩�).

As a first consequence of the definition, two questions arise, namely:

1. Existence. Which conditions on f , g, u and �, if any, guarantee that � be a
sliding surface?

2. Ideal sliding dynamics. Note that the dynamics defined by (7), (8) and (9) do
not consider �; however, if � is a sliding surface, it is dynamically invariant.
Then the question is which vector field governs the system on �.

In the next section, both problems have been solved respectively.
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Figure 2. An example of sliding, second case.

3.1. Method of equivalent control and ideal sliding dynamics

Definition 3. Let us define equivalent control as the control law, ueq :U → R, which
makes � an invariant manifold for the dynamical system defined in (7), that is to say,
ueq is such that the vector field f + gueq is tangent to �. This results in

〈grads, f + gueq〉 = 0, (10)

where 〈·, ·〉 denotes the standard scalar product, and thus,

ueq = −〈grads, f 〉
〈grads, g〉 . (11)

As it is proved in [7], a paper by Filipov on differential equations with discontin-
uous right-hand side, ideal sliding dynamics, i.e., the dynamics on �, are governed by
the vector field

f (x)+ g(x)ueq(x).

Notice that a necessary condition for the existence of equivalent control is
〈grads, g〉 �= 0.

This equivalent control makes the sliding surface dynamically invariant. Hence,
system trajectories reaching � slide on it.

Ideal sliding dynamics remains to be studied, particularly by computing possible
equilibrium points and determining whether they are stable or not.
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3.2. Control law and sliding motion

As far as existence is concerned, two results, depending on whether u+ and u− are
fixed or not, are given in this subsection.

Proposition 1. � is a sliding surface for the dynamical system defined by (7), (8) and
(9) if and only if there exists θ , a neighbourhood of �, such that

d

dt
s
(
φ(x, t)

)
< 0 if s

(
φ(x, t)

)
> 0,

d

dt
s
(
φ(x, t)

)
> 0 if s

(
φ(x, t)

)
< 0.

Remark. We consider derivatives of s along the trajectories of the vector field
f (x) + ug(x) for the values of u defined in (9). These conditions may also be writ-
ten as {

lims→0+ Lf+gu+s(x) < 0,

lims→0− Lf+gu−s(x) > 0,
(12)

where Lf+gu+s(x) denotes the directional derivative of the scalar function s with respect
to the vector field f + gu at point x. That is to say, the change rate of the scalar surface
coordinate function s(x), measured in the direction of the controlled field, is such that a
crossing of the surface is guaranteed.

These conditions are equivalent to{
lims→0+

〈
grads, f + gu+

〉
< 0,

lims→0−
〈
grads, f + gu−

〉
> 0.

(13)

The geometrical meaning is that on � the projections of the controlling vector
fields f + gu+ and f + gu− on (grads) are of the opposite sign, and hence, the con-
trolled fields locally point towards the surface � (figure 3).

In practice, sliding motion is not attainable; imperfections such as hysteresis, de-
lays, sampling and unmodelled dynamics will result in a chattering motion in a neigh-
bourhood of the sliding surface, as it has been schematized in figure 4. Such a real model
will usually lie in the field of ordinary differential equations, and therefore, there is no
need for Filipov’s theory.

Moreover, if the control functions u+ and u− can be designed arbitrarily, the next
proposition gives a very simple condition for � to be a sliding surface.

Proposition 2. A necessary and sufficient condition for the existence of control func-
tions u+ and u− making � be a sliding surface is

〈grads, g〉 �= 0, (14)

which is known as the transversality condition.
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Figure 3. A graphic interpretation of the conditions given in (13).

Figure 4. Chattering.

The proof is easy and can be found in [1] where this subject is widely considered.
The cornerstone of the proof is to take the function s2 as a Lyapunov function; so would
that be applied in the remark and in the former proposition.

As outline of the proof: since 〈grads, g〉 �= 0, equivalent control exists. Then
taking

u = ueq − k sign(s), k > 0, (15)

and assuming 〈grads, g〉 > 0, s2(x) � 0 qualifies as a Lyapunov function.

4. Problem solution

The control of the reactor is solved in this section by following steps in section 3.



E. Fossas et al. / Sliding mode control in a bioreactor model 211

4.1. Equilibrium points

According to definition 1, the equilibrium points of system (3)–(4) are the roots of
the equations

0=−Cω + C(1−N)eN/γ , (16)

0=−Nω + C(1−N)eN/γ 1+ β

1+ β −N
, (17)

which have a trivial solution of no interest in (C,N) = (0, 0). The case ω = 0 in
the original system provides two other solutions, namely, (C, 1) and (0, N). Assuming
C > 0, N > 0 and ω �= 0, it can be proved that the system equilibrium points lie on the
parabola

C = − 1

1+ β
N2 +N, (18)

which has the vertex on ((1+ β)/4, (1+ β)/2) and cuts the axis N on (0, 0) and
(0, 1 + β).

4.2. Sliding mode control methodology

The sliding mode control design for the bioreactor follows the steps set out in
section 3, namely:

(1) the design of a sliding surface that guarantees that a stable equilibrium point
will be reached, and

(2) the design of an appropriate control law taking into account (15) and the con-
straints of ω derived from the physical model.

In the case under discussion, the phase space is the plane and the sliding surface is
reduced to a line.

4.2.1. Design of the sliding surface
(1) Sliding surface. Let us select a line cutting the parabola at an equilibrium point
previously stated. In order to simplify the solution, let us take the line as a straight line
AC+BN = D. To verify the transversality condition (14), D �= 0 must be true, i.e., the
straight line must not cross the origin (0,0). There is no loss of generality in assuming
D = 1. Some brief remarks on the equilibrium points stability will be considered in the
last paragraph of this subsubsection.
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Figure 5. Stability of the equilibrium points when the line has negative slope.

(2) Equivalent control. The equivalent control ωeq derived, as in (11), from

d

dt
(AC + BN − 1) = 0

is given by

ωeq = C(1−N)eN/γ

AC + BN

(
A+ B

1+ β

1+ β −N

)
. (19)

On the sliding line � equation (19) results in

ωeq|� = C(1−N)eN/γ

(
A+ B

1+ β

1+ β −N

)
.

(3) Ideal sliding dynamics. Once ω = ωeq, the sliding line is dynamic-invariant. The
ideal sliding dynamics, that is, the dynamics resulting from the restriction to the sliding
line, are given by the vector field

�v = C(1−N)eN/γ

(
C

1+ β

1+ β −N
−N

)
(−B,A). (20)

The dynamics are characterized by the stability of the two equilibrium points ob-
tained from the intersection of the parabola and the sliding line, one of those being stable
and the other unstable. In figures 5 and 6, the ideal sliding dynamics close to the equi-
librium points have been depicted. From (20), stability of the equilibrium point clearly
depends on (−B,A) and the sign of C(1+ β)/(1+ β −N) − N (positive or negative
depending on which side of the parabola is considered). The straight lines with a neg-
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Figure 6. Stability of the equilibrium points when the line has positive slope.

ative slope AC + BN = 1, A,B > 0, cut the parabola at two intersection points: the
lower stable and the upper unstable. On the other hand, for straight lines with a positive
slope AC − BN = 1, A,B > 0, the lower equilibrium point is unstable and the upper
stable.

Thus, in order to have a stable equilibrium point as ideal sliding dynamics, let us
take AC + BN = 1, A,B > 0, which cuts the parabola at two intersection points: the
lower stable, inside the square and the upper unstable, outside.

4.2.2. Control policy
To define the control strategy, (15) is taken into account. In addition,

(1) the input w must belong to the interval [0, 2];
(2) the square [0, 1] × [0, 1] should be dynamic-invariant.

As in (15), let us now take ω = ωeq + ω̂ and look for conditions for ω̂ such
that 0.5(AC + BN − 1)2 is a Lyapunov function for the system. A straightforward
computation gives

d

dt

1

2
(AC + BN − 1)2 = −(AC + BN − 1)(AC + BN)ω̂ < 0. (21)

As for the dynamic-invariance of the square [0, 1] × [0, 1], note that

1. On N = 0, the dynamic vector field is (Ċ, Ṅ) = C(1 − ω, 1). The vertical
component is positive, so trajectories go up.

2. On N = 1, the dynamic vector field is (Ċ, Ṅ) = ω(−C,−1). The vertical
component is negative, so trajectories go down.

3. On C = 0, the dynamic vector field is (Ċ, Ṅ) = (0,−Nω). The horizontal
component is zero, so trajectories do not go to the left-hand side.
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Figure 7. (C,N) phase-state diagram with different trajectories controlled by sliding mode.

4. On C = 1, the dynamic vector field is

(Ċ, Ṅ) =
(
−ω + (1− N)eN/γ ,−Nω + (1−N)eN/γ 1+ β

1+ β −N

)
.

If ω > (1−N)eN/γ , trajectories go to the left-hand side.

Taking into account all of the previous considerations, the control policy is de-
fined by 

ω = ωeq + ω̂ if 0 � ωeq + ω̂ � 2,
ω = 0 if ωeq � 0,
ω = 2 if 2 � ωeq,

(22)

where, in turn, ω̂ should satisfy
ω̂ < 0 if AC + BN < 1,
ω̂ = 0 if AC + BN = 1,
ω̂ > 0 if AC + BN > 1.

(23)

Notice that AC + BN � 0 in [0, 1] × [0, 1]. Thus, in agreement with the previous
equations, let us define ω̂ = −ωeqC, where ω̂ < 0, and ω̂ = (2− ωeq)N , where ω̂ > 0,
resulting in a flow rate ω equal to

ω =



ωeq(1− C) if 0 � ωeq � 2 and AC + BN < 1,
ωeq if 0 � ωeq � 2 and AC + BN = 1,
ωeq(1−N)+ 2N if 0 � ωeq � 2 and AC + BN > 1,
0 if ωeq � 0,
2 if 2 � ωeq.

(24)
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Figure 7 shows the phase-state diagram for the system. Several trajectories corre-
sponding to different initial conditions scattered all over the square have been depicted.
As can be seen, simulation results are in accordance with the desired behaviour. In this
case, the point (0.2196, 0.70) has been selected as a destination point, and the straight
line joining this point and the intersection between the parabola and N = 1 as the sliding
line. The controlled trajectories move in the square until reaching the sliding line, and
then evolve on it up to the equilibrium point, where they remain.

5. Discrete switched control

When implementing the control in the real world, it is necessary to consider a
sampling interval and convert the continuous process into a discrete one. The variables
are sampled at the end of each sample period; then the input ω is evaluated and kept for
the whole period. Thus, the behaviour of the control presents some differences.

In the case of discrete sliding mode control, it is necessary to introduce some
changes. For the bioreactor, for example, a narrow band constituted by two straight
lines (AC + BN = 1 ± ε), which are parallel to the sliding line (AC + BN = 1), has
been considered. The process used generalizes the continuous mode control using ωeq

inside the band, not only on the sliding line. As can be seen in the next definition, a
slight modification has also been considered whenever 1 − ε < AC + BN < 1 + ε in
order to improve the behaviour of the trajectories and to avoid taking very narrow bands.
Finally, the discrete control ω is defined as

ω =



ωeq(1− C) if 0 � ωeq � 2 and AC + BN < 1− ε,
ωeq(AC + BN) if 0 � ωeq � 2 and 1− ε � AC + BN � 1+ ε,
ωeq(1−N)+ 2N if 0 � ωeq � 2 and 1+ ε < AC + BN,

0 if ωeq � 0,
2 if 2 � ωeq.

(25)

When the straight line AC + BN = 1 is secant to the parabola of the equilibrium
points, the band is symmetrical to the straight line. However, if a straight line tangent to
the parabola were considered, the band should change into a semi-band in order to reach
a point in the parabola. In this case, it is necessary to adopt the equations which appear
in (24).

6. Conclusions

The simulations carried out show that

(a) In the discrete case, sliding mode control presents a good performance because
ω changes slightly with respect to the continuous case.
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Figure 8. µmax values in the interval [0, 1] in percentage.

(b) Generally sliding mode control is a good option, but it is slow when the trajec-
tory is on the sliding surface.

(c) The narrow band considered in discrete sliding mode control implies a reduc-
tion in precision. This reduction is less important than the tolerance margin
accepted for the plant with which we are dealing.

Additionally, the time invested in measuring the concentrations of cells and nutrient
has to be taken into account when defining the value of the sampling period. For the
purposes of this study, a sample period of twenty minutes or half an hour is considered,
which seems to be sufficient.

According to [8], the relationship between the real time t and the dimensionless
time t∗ which is used in computer simulations verifies (5), where µ(SF ) may be bounded
by the maximum of µ(S); that is to say, µmax. This value µmax appears tabulated in [8]
for different kinds of cells and substratum. Figure 8 shows the percentage of µmax values
in the interval [0,1]; the approximate average value is µmax = 0.25, all in hours−1 units.

If the µmax is 0.25 or has a relatively low value in the interval [0, 1] (the most
common situation (figure 8)), using a computer time )t∗ = 0.125 corresponding to half
an hour of real time, the sliding mode is an appropriate control option. Nearly all of the
cases are found in the interval [0, 0.75]. If µmax is 0.75 the computer time )t∗ = 0.25,
which corresponds to twenty minutes of real time, may be used with excellent results.

Figures 9 and 10 corroborate the above comments. For the same cell concentra-
tion C, the system can be stabilized to two different nutrient concentrations N in the
parabola. Namely, for C = 0.2196, one has N = 0.32 and N = 0.70. In figure 9, the
destination point (0.2196, 0.32) has been considered, (0.2196, 0.70) being the destina-
tion point in figure 10. Two simulations corresponding to )t∗ = 0.125 and )t∗ = 0.25
are carried out in both cases. The resulting control input and phase-plane are plotted in
the figures.
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Figure 9. Discrete process of sliding mode control with (0.2196, 0.32) destination point and )t∗ = 0.125
and )t∗ = 0.25.
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